Math 'Convincing and Proving' Critiquing 'Proofs' Tasks - Set \#3

Malcolm Swan

Mathematics Education
University of Nottingham
Malcolm.Swan@nottingham.ac.uk
Jim Ridgway
School of Education
University of Durham
Jim.Ridgway@durham.ac.uk

The aim of this assessment is to provide the opportunity for you to:

- evaluate 'proofs' of given statements and identify which are correct;
- identify errors in 'proofs'.

1. Consecutive Addends

Here are three attempts at proving the following statement:
When you add add three consecutive numbers, your answer is always a multiple of three.

Look carefully at each attempt. Which is the best 'proof'? Explain your reasoning as fully as possible.

Attempt 1:		Attempt 2:	Attempt 3:
$1+2+3=6$	$3 \times 2=6$	$3+4+5$	Let the numbers be: $\mathrm{n}, \mathrm{n}+1$ and $\mathrm{n}+2$
$2+3+4=9$	$3 \times 3=9$	The two outside numbers (3 and	Since
$3+4+5=12$	$3 \times 4=12$	5) add up to give twice the middle number (4). So all three	$\mathrm{n}+\mathrm{n}+1+\mathrm{n}+2=3 \mathrm{n}+3=3(\mathrm{n}+1)$
$4+5+6=15$	$3 \times 5=15$	numbers add to give three times the middle number.	It is clearly true.
$5+6+7=18$	$3 \times 6=18$	So it must be true.	
And so on. So it must be true			

The best proof is attempt number \qquad

This is because \qquad

My criticisms of the others are.

2. Areas and Perimeters

Here are three attempts at proving the following statement:
If you have two rectangles, the one with the greater perimeter will have the greater area.

Which is the best 'proof'? Explain your reasoning as fully as possible.

Attempt 1:

Suppose you have a rectangle with sides of length $a \operatorname{and} b$.
If you increase the perimeter of the rectangle, you must increase these sides.
Suppose you increase the sides to lengths
$a+x$ and $b+y$, where $x, y \quad 0$
(At least one of x or $\mathrm{y}>0$ or you do not increase the perimeter).
The area obtained will be given by
$(a+x)(b+y)=a b+x b+y a+x y>a b$
This is clearly greater than the area ab.
So increasing the perimeter must increase the area.

So the statement is true.

Attempt 2:

Here are some examples:

If you put them in a table it is easy to see that the bigger the perimeter, the bigger the area.

Perimeter (units)	14	16	22	24
Area (square units)	12	20	30	35

So the statement is true.

Attempt 3:

Just look at these:

So the statement is clearly false.

The best proof is attempt number

This is because \qquad

My criticisms of the others are. \qquad

3. Coin Turning

A student is playing a coin turning game. She starts with three heads showing and then turns them over, two at a time.

After a while she makes the statement:
If I turn them two at a time, it is impossible to get all three showing tails.
Here are three attempts to prove this. Look carefully at each attempt. Which is the best 'proof? Explain your reasoning as fully as possible.

Attempt 1:	Attempt 2:	Attempt 3:
You can only get the following four arrangements when you turn two at a time:	I will score each position. Let $\mathrm{H}=1$ and $\mathrm{T}=0$. So: HHH $=1+1+1=3$, HTH $=1+0+1=2$	It is impossible because the most tails you can have showing is two. When you turn the head over from that position, you must also turn over one of the tails, so you can't get rid of all the heads whatever you do.
HHH	and so on.	
TTH	My first position scores 3.	
So it is impossible.	Each time I move, my score will either increase or decrease by 2 or stay the same.	
	So I can only get into positions with odd scores.	
	So it is impossible to get a score of zero.	
	So TTT is impossible.	

The best proof is attempt number \qquad

This is because \qquad

My criticisms of the others are \qquad

