'Creating Measures' Awkward-ness Task - Example \#5 (solutions)

Malcolm Swan

Mathematics Education
University of Nottingham
Malcolm.Swan@nottingham.ac.uk
Jim Ridgway
School of Education
University of Durham
Jim.Ridgway@durham.ac.uk

This problem gives you the chance to:

- invent your own measure for the concept of "awkward-ness"
- use your measure to put situations in order of "awkward-ness"
- generalize your measure to work in different situations.
- Have you ever arrived at a packed theater after the show has started?
- You have to make everyone stand while you squeeze past to take your seat.
- Imagine that five people A, B, C, D and E each arrive to take their seat in a theater.
- They are not allowed to take different seats to the one they have been allocated.

This diagram shows the order in which they arrive and their seating positions:

- So, D arrives first and sits in the second seat from the right hand end of the row.
- Then E arrives. D has to stand up while E squeezes into the last seat in the row.
- Then A arrives. She sits on the first seat of the row.
- Now B arrives and makes A stand, while he takes the second seat in.
- Finally C arrives and makes both A and B stand up while she takes her seat.

Warm-up

Try out this situation from different starting points using scraps of paper labeled A, B C, D and E until you can see what is happening.
What is the most awkward situation you can devise?

Draw it below:

Here are four movie theater situations:

Siruation 1

Struation 2

Comment:
The most awkard situation possible is shown below:

In this situation, A sits first, then

- A stands while B takes her place
- A and B stand while C takes his place
- A, B and C stand while D takes his place
- A, B, C and D stand while E takes her place.

1. Place the four situations in order of "awkward-ness."

- Which is the easiest situation for people?
- Which is the most awkward?
- Explain how you decided.

Solution:

The above measure is unsatisfactory because:
The easiest situation is situation (3), because this results in only one person having to stand on one occasion (person D has to stand while E squeezes by).

The most awkward situation is probably (4) because people have to stand on five occasions. (A has to stand while B sits down, then A, B, C and D all have to stand while E sits down.)
2. Invent a way of measuring "awkward-ness." This should give a number to each situation. Explain carefully how your method works.

Solution for Questions 2 and 3:
A suitable measure of "awkward-ness" would be to count the number of times a person makes someone stand up to let them pass. This would give, for situations 1 to 4 :

	Number of times person makes someone else stand					
Situation	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	Total
$\mathbf{1}$	0	1	2	0	1	4
$\mathbf{2}$	0	0	2	3	3	8
$\mathbf{3}$	0	0	0	0	1	1
$\mathbf{4}$	0	1	0	0	4	5

Using the totals, we have, from least to most awkward:
Situations 3, 1, 4 then 2.
3. Show how you can use your measure to place the four situations in order of "awkward-ness." Show all your work.
4. Adapt your measure so that the minimum value it can take is 0 (where no-one is made to stand up) and the maximum it can take is 1 (the most awkard situation possible).

Solution:

To make the measure range from 0 to 1 , we could divide the totals above by the maximum possible "awkward-ness" score for five people $=10$ (see Warm-up).
5. Show how your measure in part 4 may be generalised for any number of people entering a row. (That is when n people enter a row with n available seats).

Solution:

If there was just one person, the maximum "awkward-ness" $=0$.
For 2 people, the maximum "awkward-ness" $=1$.
For 3 people, the maximum "awkward-ness" = 3 (= $1+2$).
For 4 people, the maximum "awkward-ness" $=6(=1+2+3)$.
For 5 people, the maximum "awkward-ness" = $10(=1+2+3+4)$.

For n people, the maximum "awkward-ness" $=\frac{\mathrm{n}(\mathrm{n}-1)}{2}(=1+2+3+\ldots \mathrm{n})$.
Thus, if $s=$ The number of occasions on which people have to stand; we can define our measure of "awkward-ness" for a given situation to be:
$\mathrm{s} \div\left(\frac{\mathrm{n}(\mathrm{n}-1)}{2}\right)$
$=\frac{2 \mathrm{~s}}{\mathrm{n}(\mathrm{n}-1)}$

