'Creating Measures' Square-ness Task - Example \#1 (solutions)

Malcolm Swan

Mathematics Education
University of Nottingham
Malcolm.Swan@nottingham.ac.uk
Jim Ridgway
School of Education
University of Durham
Jim.Ridgway@durham.ac.uk

This problem gives you the chance to:

- criticise a given measure for the concept of "square-ness"
- invent your own ways of measuring this concept
- examine the advantages and disadvantages of different methods.

Warm-up

Use visual judgements to answer the warm-up questions.
Which rectangle looks the most square?
Which rectangle looks least square?
Without measuring anything, put the rectangles in order of "square-ness."
Comment:

This first question is simply intended to orientate the students to the task in hand. It may be used as a class discussion.

1. Someone has suggested that a good measure of "square-ness" is to calculate the difference:

Longest side - shortest side

for each rectangle. Use this definition to put the rectangles in order of "square-ness." Show all your work.

Solution:

Using the measure 'Longest side - shortest side', the "square-ness" of each rectangle is given in the table below (using centimeters as the unit).

Rectangle	A	B	C	D	E	F	G	H	I
Dimensions (cm)	3×3	1×8	6×2	4×1	3×4	3×2	6×5	4×2	12×4
Square-ness (cm)	0	7	4	3	1	1	1	2	8

Using this measure, the rectangles in order from most to least square are:
A, E and F and G (tie), H, D, C, B, I.
2. Using your results, give one good reason why Longest side - shortest side is not a suitable measure for "square-ness."

Solution:

The above measure is unsatisfactory because:

- It gives no indication of the overall 'proportions'. (E, F and G under this definition have the same square-ness yet are clearly different in shape, while C and I are similar in shape but give different square-ness measures).
- It is dependent on the units used. If we use inches instead of centimetres we get a different "square-ness" measure.

3. Invent a different way of measuring "square-ness." Describe your method carefully below:

Solution:

There are many other ways of measuring "square-ness." Students might, for example, propose using:
a) The ratio longest side/shortest side;
b) The largest angle between the diagonals of the rectangle;
c) The ratio of perimeter/area.
a) and b) seem equally sensible. c), however, suffers the same problem as before. As it is not dimensionless, an enlargement of a rectangle will result in a different value for its "squareness."

If, however, we use
d) the ratio (perimeter) ${ }^{2} /$ area
then we would have a suitable, dimensionless measure.
4. Place the rectangles in order of "square-ness" using your method. Show all your work.

Solution:

Whichever measure we now use (a), (b) or (d), we obtain the same order for the rectangles. In order of "square-ness" they are:

A (most square), G, E, F, H, C and I (tie), D, B (least square).

Rectangle	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}
Dimensions (cm)	3×3	1×8	6×2	4×1	3×4	3×2	6×5	4×2	12×4
Ratio: Longest \div Shortest	1	8	3	4	1.3	1.5	1.2	2	3
Largest angle between diagonals	90°	166°	143°	152°	106°	113°	100°	127°	143°
Ratio: Perimeter \div area	16	40.5	21.3	25	16.3	16.7	16.1	18	21.3

5. Do you think your measure is a good way of measuring "square-ness?" Explain your reasoning carefully.

Solution:

Here we would like students to review their results critically and decide whether the results from their measurements accord with their intuitions.
6. Find a different way of measuring "square-ness."

Compare the two methods you invented. Which is best? Why?

Solution:

This question provides an opportunity for students to look for an alternative measure.

